If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x)^2=81
We move all terms to the left:
(3x)^2-(81)=0
a = 3; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·3·(-81)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*3}=\frac{0-18\sqrt{3}}{6} =-\frac{18\sqrt{3}}{6} =-3\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*3}=\frac{0+18\sqrt{3}}{6} =\frac{18\sqrt{3}}{6} =3\sqrt{3} $
| 8=6x-2x | | b÷7+4=0 | | -8x+7-x+12=73 | | 4y+7=5y-12 | | -18+6x-3-x=-21 | | 16=7|p+3|+32 | | 4y+7=57-12 | | 3000+200s=4200 | | -9x-12+4x=-27 | | 181=c+101 | | 3-4x+8x-2=-3 | | 6x-19-7x+1=-20 | | 5(2y-7)=-15 | | 12c-11c—19c+-13c=-14 | | 21/4b=14 | | 23+x=41 | | 12x-5=20+10x+17 | | 80n-47n=198 | | 8z+11=79-2z | | 1.25t+5=12.5t+14 | | 11y=32 | | 5n+16+6n-2=180 | | 6/4x=23 | | 4x-8=50 | | 5(2+4m)=-90 | | 0.8x12=-8x+12 | | 16=-4(3x-1) | | 3x+2÷5=4 | | 7s+24=130 | | 2(4y-7)=-6 | | 5(x-10)=80 | | 7.72x+15.44=30.88 |